LT spice starting on a Mac
 Minhyea Lee

1. Download .dmg file and install as instructed in Handout.
2. Starting Ltspice and open New Schematic this will be your .asc file to submit for assignment

3. It will open a gray area for drawing circuits. Note that there are only 3 buttons on the menu. Dotted gray background can be selected from View> grid
Un
4. On Mac, LTspice uses right-click a lot! So this is a good time to check your computer how it was set.

** Go to your System Preference > mouse or > trackpad and check your setting for Secondary click is right-click for trackpad.

5. Once you figure out your right click, here we can start with drawing wire by clicking Draft> Wires:

6. Here I draw a box for closed circuit. Now add resistance. Again go to Draft>Component type Resistor and then click OK

Then place it where you'd like it to be. If you'd like to rotate, press Ctrl-r until the correct direction. You can escape the component cursor mode by pressing esc key.
7. IMPORTANT: LTspice circuit will not work WITHOUT ground!! Add wire and right click at the end of wire. Select Label Net then choose GND, then the wire tap will change to

8. Now add voltage source - either DC or AC Pulse - Right click and Draft>Component and start typing. Then highlight the one you are looking for (here voltage source) from menu and click OK. You can specify the characteristics of Voltage source by right-click. It opens up a property menu for Voltage source (See Step 10).

9. Add resistance values: Right click on the resistor (cursor changes from arrow to hand). Enter the number. " k " represent 103, "MEG", 106, etc. Please google the numeric format.

10. Specify Voltage source: Similarly right click on the voltage source - either DC (simply enter the value) or AC , at least give DC offset (0V), amplitude (1V) and Freq (1000 Hz)

11. Finally, Each node to be measured have to be specify. Here that would be Vin and Vout . In order to do this, place the cursor for the location for Vin (or Vout) would be measured (indicated as arrow) and right click. The select Label Net and on third item, add name Vin or Vout
电 a

Draft3.asc

** Now your circuit is completed and need to measure What Vin and Vout looks like

12. Right-Click anywhere and choose Draft>SPICE directive .

13. Edit Box appears. Don't know what to type? Again Right-click and choose Analysis Cmd

14. We will mostly use transient and AC analysis. Transient is for time-domain (i.e. x-axis is time as oscilloscope screen).

Transient	AC Analysis	DC Sweep	Noise	DC Transfer	DC Bias Poin
Perform a non-linear, time-domain simlulation.					
Stop Time:					
Time to Start Saving Waveform Data:					
Maximum Timestep Size:					
Start external supply voltages at OV : \square					
Stop the simulation once steady state is detected': \square					
Don't reset $\mathrm{T}=0$ when steady state is detected': \square					
Skip the solution of the intial operating bias point: \square					

15. Specify Stop time -- consider your frequency. 5 periods. e.g. for 1 kHz , it would be 5 ms . For now, just specify the Stop Time and leave others blank (which is always good thing to do , if you don't know what to do with it.) Then click ok
16. Now your circuit simulation is ready to run by clicking (obvioualy) run button

17. Then graph screen appears Note that x -axis is already marked up to 5 ms

**You can right-click and specify property - like showing grid and data points.

18. Bring the cursor near Vin. The arrow will change to voltage probe and clicking while "Voltage probe" shape cursor, it will plot the Vin.

19. Then click Vout with the voltage probe.

It will overplot . (Below green is Vin and blue is Vout)

** If you click while holding down Shift-Ctrl, the voltage probe will change to the current probe cursor and clicking will make current vs time plot appear (on current values showns on right y-axis).

Ok .. this is just a bare-bone instruction and now go and play around !!! END

